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1. Renormalization in φ4 (reminder).

1.1. Regularization and renormalization program.

Recall our renormalization program we considered for the φ4 theory.

1.

Start with the action

A =

∫
d4x(

1

2
(∂φ0)

2 +
m2

0

2
φ2

0 +
λ0

4!
φ4

0)

(1)

containing the bare field, bare mass, and bare coupling constant.

2.
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Introduce some cutoff with a cutoff momentum Λ (this can be done

many ways).

3.

We expect that one can give parameters m2
0, λ0, and the field renormal-

ization constant Z certain dependence on Λ:

m2
0 = m2

0(Λ) , λ0 = λ0(Λ) , Z = Z(Λ)

(2)

such that the correlation functions of the renormalized field

φ = Z−
1
2 (Λ)φ0,

< φ(x1)...φ(xN) >= Z−
N
2 (λ,m,Λ) < φ0(x1)...φ0(xN) >

(3)

have finite Λ→∞ limit.

4.

We rewrite the initial action in terms of renormalized λ, m, φ(x) intro-

ducing counterterms

A =

∫
d4x(

1

2
(∂φ)2 +

m2

2
φ2 +

λ

4!
φ4 +

δZ

2
(∂φ)2 +

δm2

2
φ2 +

δλ

4!
φ4)

(4)

where m is an actual mass and λ is suitably defined finite coupling constant.

The identity with the original action implies

1 + δZ = Z , m2 + δm2 = Zm2
0 , λ+ δλ = Z2λ0

(5)

It leads to the renormalized perturbation theory where the per-

turbation expansion is going by renormalized coupling constant
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λ with the following Faynman rules:

=
1

k2 +m2

(6)

k1 k2

= (k2
1δZ − δm2)(2π)4δ(k1 + k2)

(7)

= λ

(8)

= δλ

(9)

Therefore we assume the counterterm coefficients themselves depend per-

turbatively (i.e. as power series) on λ:

δZ = Z1λ+ Z2λ
2 + ...

δm2 = b1λ+ b2λ
2...

δλ = a1λ+ a2λ
2 + ...

(10)

In the cutoff regularization the coefficients Zi, bi, ai depends on

the Λ, while in the dimensional regularization the coefficients Zi,

bi, ai depends on ε = 4− d.
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1.2. Renormalization schemes.

Counterterms must cancell divergences of diagrams but it does not

fixes the counterterms completely because we have a free to

change the finite parts of counterterms. For example φ can be addi-

tionally renormalized by a finite value

φ→ Z
1
2

finφ

(11)

One can similarly renormalize the mass m and the coupling constant λ by

a finite values leading to another renormalized perturbation theory where

all divergences are absorbed again. The different renormlized perturbation

theories are called renormalization schemes.

If φ, m2, λ and φ̃, m̃2, λ̃ are parameters in two different renormalization

schemes, the corresponding proper vertices are related by

Γn(pi|m2, λ) = Zfin(m
2, λ)−

n
2 Γn(pi|m̃2(m2, λ), λ̃(m2, λ))

(12)

These two different renormalization schemes are two different per-

turbative descriptions of the same QFT. The parameters m2, λ

can be understood as a coordinates in the space of φ4 QFT’s.

1.3. Physical mass and normalization of field.

The renormalization conditions define the relation between the

parameters m2, λ and φ with the physical values.

It is natural for example to choose parameter m2 as a square of physical

mass. Namely, we have seen that Γ2(p2) becomes zero at some point p2 =

−m2 so that the physical mass is given by this value of p2.
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It does not fix the normalization of the field φ. It is convenient to fix

the field normalization demanding

Γ2(p2) = p2 +m2 +O((p2 +m2)2), when p2 +m2 → 0 (13)

In other words we require the 2-point correlation function

W 2(p2) =
1

p2 +m2
+O(1)

(14)

has pole at p2 = −m2 and the residue at this point is equal 1.

1.4. Coupling constant normalization.

The coupling constant has to be normalized also. It can be done by

fixing the value of vertex Γ4. The standart way to do that is to choose

Γ4(p, p,−p,−p)|p2=−m2 = λ (15)

The equations (13), (15) is one of the possibilities to choose the Renor-

malization Scheme (RS).

1.5. Renormalizable and nonrenormalizable theories.

Recall that in renormalizable theory the divergences can be ab-

sorbed by finitely many counterterms. So we need to fix only finite

number of physical parameters to determine the theory. So they are self

consistent theories.

The (perturbatively) nonrenormalizable theory has infinitely

many primitive divergences which can not be obsorbed by any

finite number of counterterms. Overall consistency of nonrenormaliz-

able theories is very questionable. From purely pragmatic point of view,

the necessity to introduce infinitely many counterterms brings
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in also infinitely many free parameters, and predictive power of

such theories is limited.

2. Scattering amplitudes and Green’s functions (reminder).

Sc(~p1, ..., ~pN |~q1, ..., ~qM) = Z
N+M

2 GN+M,amp(k1, ..., kN+M)

(16)

where

ki = −pi , i = 1, ..., N

ki = qi , i = N + 1, ..., N +M

(17)

Therefore, in order to calculate the element of S-matrix we must

calculate the corresponding connected diagrams and cut off the

external legs. Here, of course, it is assumed that theory is renormalizable

so that the Green’s functions are finite and do not depend on the cutoff.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

3. Paths integral for fermionic fields.

We are now going to consider renormalizable field theories with particles

of spin 1
2 and 1. We statrt from 1

2 spin.

3.1. Paths integral representation for Green functions of fermions.

Similarly to the scalar field we should expect the follownig relation for

Dirac’s field

< Ω|T (ψ̂a1(x1)...ψ̂aN (xN) ˆ̄ψb1(y1)...
ˆ̄ψbM (yM))|Ω >=

1

Z

∫
[Dψ][Dψ̄]ψa1(x1)...ψaN (xN)ψ̄b1(y1)...ψ̄bM (yM) exp(+iS[ψ, ψ̄]) (18)
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where ψ̂ai(xi),
ˆ̄ψbj(yj) are the Heisenberg’s operators and the real-time

action is

S =

∫
d4x(

ı

2
(ψ̄γµ∂µψ − ∂µψ̄γµψ)−mψ̄ψ) (19)

3.2. Spin-statistics relation theorem.

It has been shown that require simultaneously

1) Lorentz invariance,

2) boundedness of the spectrum of the Hamiltonian from be-

low,

3) causality

lead to the Fermi-Dirac statistics for the Dirac field.

More generally

Theorem (Pauli):

Demanding simultaneously Lorentz invariance, positivity of energy and

causality, requires that integer spin particles (bosons) obey Bose-Einstein

statistics, while the half-integer spin particles (fermions) obey Fermi-Dirac

statistics: any multiparticle state is now anti-symmetric. For example

...a†r~q a
†s
~k
...|0 >= −...a†s~k a

†r
~q ...|0 >

(20)

One should expect to get the same result on the right-hand side of the

expression (18). But we have classical fields on the right-hand side.

It means in fact that classical fields ψa(x), ψ̄b(y) are Grassmann

valued fields.

3.3. Generating functional Z[η, η̄].

So we need to lern how to calculate paths integrals of fermions consid-

ering them as Grassmann variables. In particular we whant to calculate
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the generating functional for Dirac’s fermions

Z[η, η̄] =

∫
[Dψ][Dψ̄] exp[ı

∫
d4x(ψ̄(ıγµ∂µψ −m+ ıε)ψ + η̄ψ + ψ̄η)] (21)

where η(x) is Grassmann valued function and prove the Wick’s theorem

for that case.

3.4. Elements of Grassmann variables analysis.

Let us consider some properties of the Grassman algebra and functions

over the Grassman numbers. Suppose we have only one grassman variable

θ:

θ2 = 0

(22)

The function f(θ) is given by Taylor expansion:

f(θ) = f0 + f1θ (23)

where f0,1 are the numbers. If we have another function g(θ) one can define

the sum and product

f(θ) + g(θ) = f0 + g0 + (f1 + g1)θ,

f(θ)g(θ) = f0g0 + (f0g1 + f1g0)θ

(24)

Thus the functions f(θ) form the Grassmann algebra over the usual num-

bers. One can also define the derivative ∂
∂θ :

∂

∂θ
f(θ) = f1 (25)

• Grassmann algebra of functions of multiple variables:
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if we have the generators θi, i = 1, ...N θiθj = −θjθi then the general

Grassmann algebra element is given by

f(θ1, ..., θN) = f0 + fiθi + fi1i2θi1θi2 + ...+ fi1i2...iNθi1...θiN (26)

How to calculate ∂
∂θk

? Of course we want ∂θi
∂θj

= δij. Let us consider

∂

∂θi

∂

∂θj
(θiθj) = − ∂

∂θi

∂

∂θj
(θjθi) = − ∂

∂θi
θi = −1

but
∂

∂θi

∂

∂θj
(θiθj) = ε

∂

∂θj

∂

∂θi
(θiθj) = ε

∂

∂θj
θj = ε,⇒

ε = −1⇔ ∂

∂θi

∂

∂θj
= − ∂

∂θj

∂

∂θi
(27)

In general case it is convinient to formulate the derivation rule as follows.

Let us introduce Z- grading on the Grassmann algebra generated by θi,

i = 1, ...N : the grading of monomial

|fi1i2...ikθi1θi2...θik| = k

(28)

and

| ∂
∂θi
| = −1

(29)

Then for any monomials Ak(θ), Bl(θ) with gradings k, l

Ak(θ)Bl(θ) = (−1)klBl(θ)Ak(θ),

and by definition
∂

∂θi
(Ak(θ)Bl(θ)) =

∂Ak(θ)

∂θi
Bl(θ) + (−1)kAk(θ)

∂Bl(θ)

∂θi
(30)

Notice that (−1)k determine Z2-grading on monomials.
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• The problem now what is the integral
∫
f(θ)dθ?

We define the integral according to Berezin, demanding
∫
f(θ)dθ =∫

f(θ + η)dθ:∫
(f0 + f1(θ + η))dθ =

∫
(f0 + f1θ)dθ + f1η

∫
dθ =∫

(f0 + f1θ)dθ ⇔∫
dθ = 0,∫

θdθ = const = 1⇒∫
f(θ)dθ = f1 (31)

Notice that ∫
f(θ)dθ =

∂

∂θ
f(θ) (32)

• Important property of Berezin’s integral.

In case of usual (even) numbers we have:

x→ λx⇒ dx→ λdx∫
f(x)dx→ λ

∫
f(λx)dx (33)

In order to be consistent with (31), (32) we should demand

θ → λθ ⇒ dθ → (λ)−1dθ,
∂

∂θ
→ λ−1 ∂

∂θ∫
f(θ)dθ → λ−1

∫
f(λθ)dθ (34)

For the case of Grassman algebra generated by θ1, ..., θN the multyple

integrals can be defined as repeated integrals. Because of∫
θidθi

∫
θjdθj =

∫
θjdθj

∫
θidθi = 1 (35)
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we obtain ∫
θidθiθjdθj = −εij

∫
θjθidθidθj =

−εij
∫
θjdθj = −εij = 1⇒

θidθj = −dθjθi (36)

And hence

dθidθj = −dθjdθi (37)

Thus the integral over dθi can be defined as∫
dθi = 0,∫

θidθj = δij ⇒∫
f(θ1, ..., θN)dθN ...dθ1 = f1...N (38)

• Simplest Gaussian integral of Grassmann variables

I =

∫
dθ2dθ1 exp(aθ1θ2) =

∫
dθ2dθ1(1 + aθ1θ2) = a

(39)

We can also use (34) to make a change of the variables θi = a−
1
2ηi and get

I = a

∫
dη2dη1 exp(η1η2) = a

(40)

• Recall some Gaussian integrals over the usual variables:

∫ ∞

−∞
exp(−ax2)dx = (

π

a
)
1
2 ,

(41)
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One can generalize this formula∫
exp(−Aijxixj)dx1...dxN = (π)

N
2 (detA)−

1
2

(42)

Recall also the complex version of the formula above∫
exp(−Aij z̄izj)dz1dz̄1...dzNdz̄N = (2π)N(detA)−1 (43)

The mesure in the integral is invariant w.r.t. the unitary transformations

zi → U j
i zj because

dz1...dzN =
1

N !
εj1...jNdzj1...dzjN →

1

N !
εj1...jNU i1

j1
...U iN

jN
dzi1...dziN =

1

N !
εj1...jNU i1

j1
...U iN

jN
εi1...iNdz1...dzN =

(detU)dz1...dzN ⇒∫
exp(−z†U †AUz)(detU)(detŪ)dz1...dzNdz̄1...dz̄N (44)

When U †AU = diag(a1...aN) we obtain (43).

• Grassmann algebra version of these integrals.

First of all∫
dθ4...dθ1 exp(Aijθiθj) =

1

2
Ai1i2Ai3i4εi1i2i3i4 ≡ 2Pf(A) = 2

√
detA (45)

In a more general situation, when we have skew-symmtric 2N × 2N ma-

trix A one can use SO(2N) transformation to bring this matrix to skew-

diagonal form 
0 a1 0 0 ... ...

−a1 0 0 0 ... ...

0 0 a2 0 ... ...

0 −a2 0 0 ... ...

 (46)
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Because of the measure dθ1...dθ2N is invariant w.r.t. to this transformation

dθ1...dθ2N = (S−1)i11 ...(S
−1)i2N2N dθ̃i1...θ̃i2N = (detS)−1dθ̃1...dθ̃2N we find∫

dθ2N ...dθ1 exp(Aijθiθj) = 2Na1...aN = 2NPf(A) = 2N
√
detA (47)

Notice that

∂

∂θ
exp(aθ) = a,

∂

∂θ2N
...

∂

∂θ1
exp(Aijθiθj) = Pf(A) (48)

• Grassmann algebra over the complex numbers.

First of all we define

θ =
θ1 + ıθ2√

2
, θ∗ =

θ1 − ıθ2√
2

,

(θη)∗ ≡ η∗θ∗ ⇒

dθdθ∗ = ıdθ2dθ1 (49)

Then ∫
dθdθ∗ exp(−θ∗aθ) = a =

∂

∂θ∗
∂

∂θ
exp(−θ∗aθ) (50)

In general case ∫ ∏
i

dθidθ
∗
i exp(−θ†Aθ) = detA (51)

where A is invertable matrix. Similar we can obtain∫
dθdθ∗θθ∗ exp(−θ∗aθ) = 1 =

1

a
a,∫ ∏

i

dθidθ
∗
i θnθ

∗
m exp(−θ+Aθ) =

∂

∂Anm

∫ ∏
i

dθidθ
∗
i exp(−θ+Aθ) =

∂det(A)

∂Anm
=

det(A)(A−1)pq
∂Apq

∂Anm
= det(A)(A−1)nm (52)
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• Generating functional in finite dimensional case.

Z[η, η∗] =

∫ ∏
i

dθidθ
∗
i exp(−θ†Aθ + η†θ + θ†η) (53)

One can make the change of variables:

θi = ζi + λi, θ
∗
i = ζ∗i + λ∗i , λ = A−1η

(54)

Under this change the measure is invariant so we get

−θ†Aθ + η†θ + θ†η = −ζ†Aζ + η†A−1η

Z[η, η∗] =

∫ ∏
i

dζidζ
∗
i exp(−ζ†Aζ + η†A−1η) =

exp(η†A−1η)

∫ ∏
i

dζidζ
∗
i exp(−ζ†Aζ) = (detA) exp(η†A−1η) (55)

3.5. Z[η, η̄] generating functional and correlation functions for Dirac’s field.

Generalizing the formulas from (55), (53) and using the arguments which

are similar to the case of scalar field we can calculate the generating func-

tional for the Dirac’s field

ZD[η(x), η̄(x)] = ZD[0, 0] exp[−
∫
d4xd4yη̄SF (x− y)η] (56)

where

SF (x− y) = ı

∫
d4k

(2π)4

exp [−ık(x− y)]

kµγµ −m+ ıε
=

ı

∫
d4k

(2π)4

exp [−ık(x− y)](kµγ
µ +m)

k2 −m2 + ıε

⇔ SF (x− y) = (ıγµ∂
µ +m)DF (x− y) (57)

The measure of integration is coming from Lorenz -invariant metric in

the space of Grassmann-valued functions:

< δψ, δζ >=

∫
d4xd4yδψ̄(x)δ(x− y)δζ(y) (58)
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Hence, the integral is Lorenz-invariant. This paths integral can be

determined again as a limit of integral determined on the lattice in Eu-

clidean space such that we obtain the integral like (53) where the number

of Grassmann variables goes to infinity.

It gives Wick’s theorem for Dirac’s fermions:

< Ω|T (ψ̂a(x1)
ˆ̄ψb(x2))|Ω >=

1

ZD[0, 0]
(−ı δ

δη̄a(x1)
)(−ı δ

δηb(x2)
)Z[η, η̄]|η=η̄=0 = SF (x2 − x1)ab̄,

...... (59)

3.6. Yukawa model.

It is helpfull to consider the application of paths integral formalism for

the case of Yukawa model. This model can be considered as a simpli-

fying version of QED where the foton is changed by a scalar field. The

Lagrangian is the sum

LY = LKG + LDir + Lint = LKG + LDir − gφψ̄ψ (60)

Our problem is to calculate the Green’s functions by the paths integral:

< Ω|Tφ(x1)...φ(xn)ψa(y1)...ψb(ym)ψ̄c(z1)...ψ̄d(zk)|Ω >=

limT→(∞−ıε)

∫
[Dφ][Dψ][Dψ̄]φ(x1)...ψ̄d(zk) exp(ı

∫ T
−T d

4x(LKG + LDir + Lint))∫
[Dφ][Dψ][Dψ̄] exp(ı

∫ T
−T d

4x(LKG + LDir + Lint))
(61)

This theory is not free, so it is impossible to use directly the Gauss inte-

gration formulas to calculate the correlation functions. Instead we assume

that coupling constant g is small and calculate the paths integral as a series

over the coupling constant. Doing so we find the Feinmann rules for this
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theory. First of all we expand

exp [ı

∫ T

−T
d4x(LKG + LDir + Lint)] = exp [ı

∫ T

−T
d4x(LKG + LDir)]

(1− ıg
∫ T

−T
d4xφψ̄ψ + ...) =

exp [ı

∫ T

−T
d4x(LKG + LDir)](1− ı

∫ T

−T
dtHint + ...) (62)

It gives in fact the representation of interraction:

< Ω|Tφ(x1)...φ(xn)ψa(y1)...ψb(ym)ψ̄c(z1)...ψ̄d(zk)|Ω >=

limT→(∞−ıε)

∫
[Dφ][Dψ][Dψ̄]φ(x1)...ψ̄d(zk) exp[ı

∫ T
−T d

4x(LKG + LDir + Lint)]∫
[Dφ][Dψ][Dψ̄] exp[ı

∫ T
−T d

4x(LKG + LDir + Lint)]

= limT→(∞−ıε)
< Ω|Tφ(x1)...ψ̄d(zk) exp[−ı

∫ T
−T dtHint]|Ω >

< Ω|T exp[−ı
∫ T
−T dtHint]|Ω >

(63)

Hence the nominator and denominator can be represented as a Feinmann

diagrams contributions with free propagators

DF (x− y)⇔ ı

p2 −m2 + ıε
,

SF (x− y)⇔ ı(kµγ
µ +m)

k2 −m2 + ıε
(64)

and interraction 3-legs diagram with 2 fermion lines and 1 boson line

−ıg
∫
d4x⇔ −ıg (65)
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One can consider also the correlation functions generating functional

Z[J(x), η(x), η̄(x)] =∫
[Dφ][Dψ][Dψ̄] exp[ı

∫
d4x(LKG + LDir − gφψ̄ψ + Jφ+ η̄ψ + ψ̄η)]

=

∫
[Dφ][Dψ][Dψ̄] exp[ı

∫
d4x(LKG + LDir + Jφ+ η̄ψ + ψ̄η)]

exp[−ıg
∫
d4yφψ̄ψ] =∫

[Dφ][Dψ][Dψ̄] exp[ı

∫
d4x(LKG + LDir + Jφ+ η̄ψ + ψ̄η)]

(1− ıg
∫
d4yφ(y)ψ̄(y)ψ(y) + ...) (66)

The problem now is to calculate this functional using the perturbation

theory over g. To do that we rewrite this functional in the form

Z[J(x), η(x), η̄(x)] =

(1− ıg
∫
d4y(−ı δ

δJ(y)
)(−ı δ

δη̄a(y)
)(−ı δ

δηa(y)
) +

(−ıg)2

2!
[

∫
d4y(−ı δ

δJ(y)
)(−ı δ

δη̄a(y)
)(−ı δ

δηa(y)
)]2 + ...∫

[Dφ][Dψ][Dψ̄] exp[ı

∫
d4x(LKG + LDir + Jφ+ η̄ψ + ψ̄η)] =

exp [− ı
g

∫
d4y(−ı δ

δJ(y)
)(−ı δ

δη̄a(y)
)(−ı δ

δηa(y)
)]

exp [−
∫
d4xd4y(J(x)DF (x− y)J(y) + η̄(x)SF (x− y)η(y))] (67)

Appendix A. Quntum mechanics paths integral in phase space,

transition amplitude.

How to calculate the transition amplitude

A(xa → xb, T ) =< xb| exp(−ıHT
~

)|xa > (68)
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It is given by the superposition of paths

A(xa → xb, T ) ≡ U(xa, xb;T ) =
∑
puths

exp(ıphase) =∫
DX(t) exp(ıphase) (69)

What is phase? When ~→ 0 the stationary phase dominates, but it must

be the classical trajectory

δ

δX(t)
(phase)|xcl = 0⇒ phase = S[X(t)]/~ (70)

The integral can be determined by discretization of the time interval and

approximazing each path X(t) by the sequence of short stright segments:

X(t) ≈ [xa = x0, x1 = x(ε)] ∪ [x1, x2 = x(2ε)]...

... ∪ [xN−1 = x((N − 1)ε), xN = x(Nε) = xb] (71)

and ∫
DX(t) =

1

C(ε)

∏
k

∫ ∞

−∞

dxk
C(ε)

(72)

The action is

S =

∫ T

0

dt(
m

2
v2 − V (X)) =

∑
k

(
m

2

(xk+1 − xk)2

ε
− εV (

xk+1 + xk
ε

)) (73)

Now we consider the equation the amplitude U(xa, xb;T ) satisfy.

To this end let us whrite

U(xa, xb;T ) =∫ ∞

−∞

dxN−1

ε
exp(

ı

~
(
m

2

(xb − xN−1)
2

ε
− εV (

xb + xN−1

ε
))U(xa, xN−1;T − ε)(74)

and expand over (xN−1 − xb):

U(xa, xb;T ) =∫ ∞

−∞

dxN−1

C(ε)
exp(

ı

~
(
m

2

(xb − xN−1)
2

ε
))(1− ıε

~
V (xb) + ...)

(1 + (xN−1 − xb)
∂

∂xb
+

1

2
(xN−1 − xb)2 ∂

2

∂x2
b

+ ...)U(xa, xb;T − ε) (75)
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Using the formulas∫
dy exp(−by2) =

√
π

b
,

∫
dyy exp(−by2) = 0,

∫
dyy2 exp(−by2) =

1

2b

√
π

b
(76)

we find

U(xa, xb;T ) =

1

C(ε)

√
ı
2πε~
m

(1− ıε

~
V (xb) + ı

ε~
2m

∂2

∂x2
b

)U(xa, xb;T − ε) (77)

In order To the limit ε→ 0 be defined we find

C(ε) =

√
ı
2πε~
m

(78)

Hence,

−ı~ ∂
∂ε

(1− ıε

~
V (xb) + ı

ε~
2m

∂2

∂x2
b

)U(xa, xb;T − ε) ≈

(V (xb)−
~2

2m

∂2

∂x2
b

)U(xa, xb, T − ε) (79)

In the limit ε→ 0 we can write

ı~
∂

∂T
U(xa, xb;T ) = (V (xb)−

~2

2m

∂2

∂x2
b

)U(xa, xb, T ) (80)

This is the Shredinger equation the evolution operator (68) satisfy

• General case: Phase space paths integral.

U(qa, qb;T ) ≡< qb| exp(−ıTH)|qa >=∫ ∏
k=1

dqk < qb| exp(−ıεH)|qN−1 >< qN−1| exp(−ıεH)|qN−2 > ...

... < q1| exp(−ıεH)|qa >

≈
∫ ∏

k=1

dqk < qb|(1− ıεH)|qN−1 >< qN−1|(1− ıεH)|qN−2 > ...

... < q1|(1− ıεH)|qa > (81)
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We have also

< qk+1|f(q)|qk >= f(qk)δ(qk+1 − qk) = f(
qk+1 + qk

2
)

∫
dpk
2π

exp(ıpk(qk+1 − qk)

< qk+1|f(p)|qk >=

∫
dp

2π
< qk+1|f(p)|p >< p|qk >=∫
dp

2π
f(p) exp(ıp(qk+1 − qk)(82)

If H(p, q) = H1(p) +H2(q) we get

< qk+1|H(p, q)|qk >=

∫
dp

2π
H(

qk+1 + qk
2

, p) exp(ıp(qk+1 − qk), (83)

In general one can use Weyl’s ordering (operator H(p, q) is a symetric

function w.r.t. p and q) implying that any Hamiltonian can be represented

by this way. Then

U(qa, qb;T ) =

∫ N−1∏
k=1

(
dqkdp

2π
) exp(ı

∑
k

(pk(qk+1 − qk)− εH(
qk+1 + qk

2
, pk))(84)

Taking the limit ε→ 0 we find

U(qa, qb;T ) =

∫
Dq(t)Dp(t) exp(ı

∫ T

0

dt(pq̇ −H(q, p))) (85)

When H = p2

2m + V (q) one can take the integral over p:∫
dp

2π
exp(ı(pk(qk+1 − qk)− ε

p2
k

2m
) =

1

C(ε)
exp(ı

m

2ε
(qk+1 − qk)2) (86)

where C(ε) is given by (78) so we’ve got the result

U(qa, qb;T ) =
1

C(ε)

∫ N−1∏
k=1

dqk
C(ε)

exp(ı
∑
k

(
m(qk+1 − qk)2

2ε
− εV (

qk+1 + qk
2

))(87)

Appendix B. Scalar field transition amplitude by paths integral.
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H =

∫
d3x(

1

2
π2 +

1

2
(∇φ)2 + V (φ)) (88)

< φb(~x)| exp(−ıTH)|φa(~x) >=∫
DφDπ exp[ı

∫
d4x(πφ̇− 1

2
π2 − 1

2
(∇φ)2 − V (φ))]

φa(~x) = φ(x0 = 0, ~x), φb(~x) = φ(x0 = T, ~x) (89)

Recall that taking the integral over π we find

< φb(~x)| exp(−ıTH)|φa(~x) >=

∫
Dφ exp[ı

∫
d4x(

1

2
(φ̇)2 − 1

2
(∇φ)2 − V (φ))](90)

where again the integration over time dx0 is going from x0 = 0 to x0 =

T > 0 with the same boundary conditions for the field φ(x).

Recall how the integrals (89), (90) could be defined?

They can be defined as the limit of finite dimensional integrals. More-

over one can use the Euclidean version of these integrals first: x0 → x4 =

ıx0, T → −ıτ , (τ > 0) and make an important assumption the spectrum

of energy of the theory is bounded form below. In this case the transition

amplitude in Euclidean space is defined as a series. Then we make an

analitic continuation to the Minkowski space-time. In Euclidean space

< φb(~x)| exp(−τH)|φa(~x) >=∫
Dφ exp[−

∫
dx4d

3~x(
1

2
(
∂φ

∂x4
)2 +

1

2
(∇φ)2 + V (φ))] (91)

Now we define the paths integral as a limit of the lattice’s integral: instead

of Euclidean space we consider a lattice in R4 with spacing ∆:

xi → xi = ∆ni, ni ∈ Z, φ(xE)→ φn,
∂φ

∂xi
→ 1

∆
(φn+∆ei − φn),∫

dx4d
3 → ∆4

∑
n

,

∫
Dφ(x)→

∏
n

∫
dφn (92)
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Then the paths integral is defined by∫
Dφ exp[−

∫
dx4d

3~x(
1

2
(
∂φ

∂x4
)2 +

1

2
(∇φ)2 + V (φ))] =

lim∆→0

∏
n

∫
dφn exp[−∆4

∑
n

LE(φn)],

LE(φn) =
1

2∆2

∑
i

(φn+∆ei − φn)2 + V (φn) (93)

When V (φ) = m2

2 φ
2 we get Gaussian integral∏

n

∫
dφn exp[−∆2

2

∑
n

((m2 + 8)φ2
n − 2

∑
i

φn+∆eiφn)] =

∏
n

∫
dφn exp[−∆2

2

∑
n,k

φkA
k,nφn] (94)

Appendix C. Green’s functions/Correlation functions relation

for scalar field.

The proof of the formula

< Ω|TφH(x2)φH(x1)|Ω >=

limT→(∞−ıε)

∫
Dφφ(x2)φ(x1) exp(ı

∫ T
−T d

4xL(φ))∫
Dφ exp(ı

∫ T
−T d

4xL(φ))
(95)

To prove this formula we consider first the following amplitude

< φb| exp(ıTH)φH(x2)φH(x1) exp(−ıTH)|φa >=

< φb| exp(−ı(−T − x0
2)H)φS(~x2) exp(−ı(x0

2 − x0
1)H)

φS(~x1) exp(−ı(x0
1 + T )H)|φa >=∫

Dφ(~x1)

∫
Dφ(~x2) < φb| exp(−ı(−T − x0

2))H)φS(~x2)|φ2 >

< φ2| exp(−ı(x0
2 − x0

1)H)φS(~x1)|φ1 >< φ1| exp(−ı(x0
1 + T )H)|φa >

=

∫
Dφ(~x1)

∫
Dφ(~x2)φ(~x1)φ(~x2) < φb| exp(−ı(−T − x0

2)H)|φ2 >

< φ2| exp(−ı(x0
2 − x0

1)H)|φ1 >< φ1| exp(−ı(x0
1 + T )H)|φa > (96)
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Notice that here x0
2 > x0

1 so the time ordering is implied. Now we consider

the limit of this amplitude when T → (∞− ıε)

limT→(∞−ıε) exp(−ıTH)|φa >=< Ω|φa > exp(−ı(∞− ıε)E0)|Ω >,

limT→(∞−ıε) < φb| exp(ıTH)| =< Ω| exp(ı(∞− ıε)E0) < φb|Ω >

=⇒

limT→(∞−ıε) < φb| exp(ıTH)φH(x2)φH(x1) exp(−ıTH)|φa >=

< φb|Ω >< Ω|φa >

< Ω| exp(ı(∞− ıε)E0)TφH(x2)φH(x1) exp(ı(∞− ıε)E0)|Ω >=

< φb|Ω >< Ω|φa >< Ω|TφH(x2)φH(x1)|Ω > (97)

where |Ω > is the ground state of the theory. Therefore

< Ω|TφH(x2)φH(x1)|Ω >=
< φb|Ω >< Ω|φa >< Ω|TφH(x2)φH(x1)|Ω >

< φb|Ω >< Ω|φa >
=

limT→(∞−ıε)

∫
Dφφ(x2)φ(x1) exp(ı

∫ T
−T d

4xL(φ))∫
Dφ exp(ı

∫ T
−T d

4xL(φ))
(98)

Appendix D. Dirac’s fermions Feynman propagator.

The expression for Feynman propagator of Dirac’s field is given by

SFab(x) ≡< 0|T (ψa(x)ψ̄b(0))|0 >=

ı

∫
d4p

(2π)4

(pµγµ +m)ab
p2 −m2 + ıε

exp(−ıpx) (99)

where

T (ψa(x)ψ̄b(y)) = ψa(x)ψ̄b(y), x0 > y0,

T (ψa(x)ψ̄b(y)) = −ψ̄b(y)ψa(x), x0 < y0 (100)

It is a Green’s function of Dirac wave operator

(ıγµ∂µ −m)abSFbc(x) =

(ıγµ∂µ −m)ab(ıγ
µ∂µ +m)bc

∫
d4p

(2π)4

ı exp(−ıpx)

p2 −m2 + ıε
=

−(∂µ∂µ +m2)acDF (x) = ıδabδ(x) (101)
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D.1. Euclidean Green function.

Recall that commutator and vacuum expectation values of KG field can

be expressed in terms of certain limiting values of a single analytic function

DC(~x, t). Moreover we have found that vacuum expectation values of T -

ordered Heisenberg operators

DF (~x, t) =< 0|T (φ̂(~x, t)φ̂(0))|0 > (102)

can be considered also as a result of analytic continuation of the Euclidean

function D(xE) satisfying the equation

(m2 −
4∑
i=1

(∂i)
2)D(xE) = δ4(xE) (103)

Looking at (101) it is natural to expect that similar situation takes place

for the Dirac’s fermions also and we can find the fermionic analog Sab(xE)

making the following substitutions

t = −ıx4, γ
0 = ıγ4,

SF (~x, t)→ S(xE) = (ıγj∂j +m)D(xE),

(ıγj∂j +m)abSbc(xE) = (ıγj∂j +m)2
acD(xE) =

δac(m
2 −

∑
j

∂2

(∂xj)2
)D(xE) = δacδ(xE) (104)

Where the Euclidean Dirac equation is implyed

(ıγj∂j +m)ψE(x) = 0 (105)

where {γi, γj} = −2δij. We are not going to discuss the Dirac’s spinors in

euclidean space.
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